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1.0 Introduction

It is fast becoming clear that configurable electronics will be vital in future space
systems.  Earlier implementations of radiation-hardened field programmable gate arrays
(FPGAs), even with their relatively primitive integration scales (measured in single-digit
K gates), have become a part of every satellite baseline since their introduction in the
mid-late 1990s.  It is small wonder then that space users covet the far more powerful
FPGAs that have been introduced in the terrestrial market.  These devices, with vast
integration scales (measured in millions of gates), offer the ability to repetitively
reconfigure high-performance electronics in system in response to demanding missions.
Unfortunately, the disconnect in gate count between commercial (8M) and rad-hard
(0.03M) is a severe barrier.  The “straight-up fabrication” of FPGAs in rad-hard form has
been a non-starter due to industry concerns of intellectual property compromise.  Even
with full cooperation, the wholesale conversion of a commercial FPGA will likely require
tens of millions of dollars, take many years, and will lock in time a snapshot of a device
that may well be obsolete even as the intended end system users complete system
builds prior to launch.

The virtual FPGA offers a new cross-cutting strategy to address this problem through
the use of selective redundancy, process/design hardening, and aggressive
management / containment of observable errors.  The approach is “re-useable”,
meaning that the methodology is directly applicable to almost any FPGA meeting
certain criteria (e.g., no latch-up), side-stepping the “snapshot-in-time” lock-in effect of a
large-scale device conversion effort, which has historically been shown as relatively
ineffective.

The potential impacts / benefits of the virtual FPGA are powerful and significant.  First,
VPGA permits rapid implementation of complex, high-performance designs.  While in no
way a total replacement for custom ASICs, the VFPGA, at 3M-8M gates, will permit
direct implementation of entire functional block diagrams in a single device, without the
~$1M NRE and 9 month cost / schedule for every rad-hard ASIC.  It is estimated by the
industry that high-performance FPGAs can implement 80% of ALL digital designs.
Hence time/cost recovery potential is very high.  Second, the VGPA permits design
change.  ASICs must be re-created.  A single design flaw can devastate a program if it
requires refabrication.  FPGA schemes such as VPGA offer the possibility of recovery in
< 1 day, not six months.  Designs can even be upgraded and design flaws rectified
AFTER launch, a clear impossibility for ASICs.  Third, the VFPGA permits the use of
existing commercial design tools.  Fourth, the VFPGA can combat design obsolescent,
even among competing schemes.  Fifth, the VFPGA is complementary to other
hardening efforts, and it can be used to attain additional improvements in reliability/fault
management.
This report documents detailed technical analysis and design of components of a
concept referred to as the “virtually-hardened field programmable gate array” (VFPGA).
The objective of the research effort is to create a compact coarse-grain redundancy
management system in which three FPGA devices are voted, pin-for-pin, at the
component level.  The application-specific integrated circuit (ASIC) responsible for
laundering the pins is referred to as the “ganglion” ASIC, so named because of the
anticipated > 2,000 pins that would be implemented to support voting 512 user input /
output (I/O) pins (including power and ground termini).  The ganglion is upset-immune
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by design, and as such acts as a firewall to a user design when a single glitch occurs in
any FPGA, even a castrophic glitch, sometimes referred to as a single-event functional
interrupt (SEFI).  The ganglion itself is managed by a radiation-hardened
microcontroller, which contains the bitstreams of the FPGAs in a configuration memory.
Upon powerup, the microcontroller retrieves two types of configuration files, the first
being a pin function map (for the ganglion), and the second being the configuration
memory bitstream of the FPGAs being protected.

The VFPGA effort is implemented over several AFRL contract programs.  This report
concentrates on the concept of the ganglion ASIC and development of intellectual
property suitable for synthesis in a design-hardened ASIC technology.

1.1. Description
A simplified representation of the VFPGA is shown in Figure 1.  The usage concept for
the VFPGA is to present a user with what appear to be an FPGA, but in actuality is a set
of components
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Rad-tolerant
FPGA with

Greatly Enhanced
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Figure 1.  The Virtual FPGA Concept.

Ganglion ASIC.  The ganglion ASIC is a pin-voting system in which identical user pins
from three different FPGAs are combined into a single, protected user pin.  The initial
plan is to form an array of 512 such cells.  The directionality of each pin must be
programmed, and this information must be extracted from the FPGA target design
before the bitstream is generated.  The expected mechanism for this would be a
hopefully automatic tool inserted into a standard FPGA synthesis, place-and-route, and
bitstream generation tool chain.  The other difference in the standard FPGA design and
programmation flow is the bitstream download.  Since two binary structures must be
downloaded into the configuration management processor, it is necessary to replace the
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normal FPGA download with a special form that transmits first the user I/O configuration
and then the unchanged.

1.2. The Simple Theory of the VFPGA
One way to explain very simply the VFPGA concept is to use a comparison of different
potential hardening approaches, as shown in Figure 2.  In SRAM-based FPGAs, it is
necessary to consider configuration and user memory (i.e., state-storage structures).  In
a user design, the flip-flops and memory cells that form finite state machines (FSMs),
registers, and other structures comprise the user memory.  On the other hand, the user-
inaccessible state storage structures that configure the FPGA to implement the logic,
memory, and interconnect needed in user designs comprise the configuration memory.
Disrupt the user memory and, for example, a counter may flip to a different count state.
Disrupt the configuration memory and the counter may not be a counter any more.  In
typical designs, most configuration memory is considered benign, meaning that the
effective SEU cross section is less than the sum of the area of all configuration memory
in general.  However, it is desirable to protect all memory structures from the effects of
disruption.

The best way to do this is to “brute force” hardened the entire FPGA.  The largest
complexity device that this has yet been attempted on is a 40K gate equivalent Atmel
device, through a NASA program to Honeywell.  This creates a bullet-proof FPGA, and
requires no thought from the user as to how to introduce mitigation.  Unfortunately, the
gate count is so anemic when compared to modern FPGAs that, when combined with
the expense of the components and their power consumption (not to mention the
potentially withering support of the tool chain) the potential uses of this device are very
limited.

USER MEMORY ERRORS

CONFIGURATION 
MEMORY 
ERRORS

OBSERVABLE
SEU

ERRORS

USER MEMORY ERRORS

CONFIGURATION 
MEMORY 
ERRORS

OBSERVABLE
SEU

ERRORS

Honeywell VFPGA VFPGA+TMR

USER MEMORY ERRORS

CONFIGURATION 
MEMORY 
ERRORS

OBSERVABLE
SEU

ERRORS

Figure 2.  Simplistic comparison of different FPGA hardening approaches.

The VFPGA approach (Figure 2, center) focuses on presenting the user a consistent
picture at the boundary of multiple devices.  In other words, the VFPGA concentrates on
observable errors.  The premise in effect is that only observable errors produce errors,
regardless of how many upsets are affecting individual devices.  As such, VFPGA
provides a potentially effective solution for arbitrarily large FPGA devices, including the
more complex devices with built in DSP and processor cores, such as the Altera
Excalibur or Xilinx Virtex II Pro families.  The VFPGA guards against even the
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catastrophic failure of a single FPGA, but is susceptible to any single event effect on the
remaining two devices.

An additional level of robustness can be created by combining triplication schemes with
VFPGA (Figure 2, right).  In this case, the user logic can provide an increased interval of
protection from cumulative error effects.  Obviously, the configuration memory is still
vulnerable however, and SEFI problems are not improved in this scheme.

Xilinx recently introduced the XTMR tool, which employs a configuration memory
scrubbing mechanism, dramatically increasing the coverage of errors over that shown in
the right portion of Figure 2.  In this case, only SEFI mechanisms are not addressed
with some level of redundancy, but protection from at least one SEFI is guaranteed with
the VFPGA concept.

1.3. Evolution of the Project
The VFPGA project evolved from earlier investigations concerning the radiation
hardness of the Altera Stratix family of FPGAs.  The Stratix FPGA  family in many ways
is similar to the Xilinx Virtex family.  However, Altera introduced as interesting feature
potentially useful in identifying single event errors.  Contained within the configuration
circuitry of Stratix FPGAs is a cyclic redundancy check (CRC) generator, used to verify
integrity of the bitstream.  Although the primary intended use of this CRC generator is to
ensure the initial transfer is not corrupted, the CRC generator can be regenerated on
demand while the FPGA is an operation.  This mechanism serves as an upset indicator,
which can be used to trigger a reconfiguration cycle which essentially resets the
configuration of the FPGA to a known condition.

The process of replenishing the configuration of an FPGA during operation for SEU
recovery is referred to as “scrubbing.”  In more standard usage, “scrubbing” in memory
systems is used to refresh memory locations during operation to prevent the
accumulation of many single bit errors that would otherwise overwhelm the ability of the
error detection and correction (EDAC).  For example, if an EDAC system is capable of
correcting a single bit error in each word of the memory component, the goal of
scrubbing is to read and write back each memory word well before two errors can
accumulate at any memory location.  So long as this can be done successfully, a user
never perceives the impact of any errors in the memory system.  By contrast, if an
FPGA receives a single bit error upset, its impacts can affect the component
immediately.  In this case, scrubbing might repair the component only after it is too late
in a critical application.  Since many space users began to worry about this problem, a
significant amount of work has gone into creating methodologies and tools to increase
robustness of a user design to single bit errors.  Synplicity’s Synplify tool, for example,
provides triple modular redundancy (TMR) support for synthesis involving certain Actel
FPGA components.  Xilinx and Sandia National Laboratories worked to develop a TMR
Tool, which is capable of replicating an entire user design from input to output.
Regardless of the effectiveness of these approaches, they introduce considerable
overhead to a user design.  In fact, the support for this method combined with scrubbing
introduces significant burden and overhead to a potential user.  Furthermore, the
effectiveness of these approaches are limited by the small but finite possibility of SEFIs.

Consideration of this problem led to the idea of creating a virtual FPGA.  The foundation
of the virtual FPGA concept was based on the notion that a user should be able to
largely pursue design without repetitively inventing solutions to the SEU problem.  As a
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currently stands, SEU mitigation and complex FPGAs is ad hoc, and significant
nonrecurring engineering (NRE) is expended across the Aerospace community in
dealing with the problem.  If, on the other hand, a virtual FPGA could be created and
sold as a modular solution, then it is no longer necessary to continuously reinvent the
solution approach.  Furthermore, through the use of advanced packaging and
architecture techniques, the insertion of a virtual FPGA need not represent a 3X size
penalty, owing to the eventual plans to implement it within the floor plan of a compact
multichip module.
At this point (early 2003), the Schafer effort focused more directly on the problems
associated with creating a virtual FPGA.  For the most part, this was done without
invalidating the previous work to create a test board for the Stratix radiation test.
Schafer developed a plan building on the previous work, in which one of the test FPGA
devices would be used to implement the functionality of the ganglion, and the exposed
(device-under-test) FPGA would be partitioned into three pseudo FPGAs.
Schafer looked toward the creation of the ganglion ASIC IP, and examined areas
ancillary problem areas, such as the Advanced Instrument Controller (AIC).  The AIC
was originally developed as an integrated microcontroller for the Mars Deep Space Two
(DS2) mission.  Since DS2, the core design had undergone significant refinement and
was being contemplated as the control management processor for the ganglion ASIC in
the virtual FPGA design.  Some of the Schafer effort was expended on examining the
feasibility of creating another AIC.  This effort was eventually tabled due to a
complementary effort at Mission Research Corporation to create a single chip AIC.

1.4. Modes and Limitations of the VFPGA Based on the Ganglion
Design

The ganglion ASIC in its current design embodiment provides a number of interesting
features.  First, it provides a en masse statistics base on single event effects at different
levels of granularity, from single pins (for each of 512) to upsets on the entire
component.  This unprecedented level of visibility makes possible the development of
mission specific reconfiguration policies, based on the slope of upsets in devices.  For
power savings, it is possible to power-down two of the three devices.  This is of
particular benefit to low-earth orbiting missions in which most of the orbital profile is
benign.  The VFPGA can take advantage of built-in CRC information or ignore it, as the
user may see fit.

The VFPGA operation can be viewed as a stop light.  Without upsets, the VFPGA is in a
“green” state.  Upon the first upset, the VFPGA is potentially susceptible to a second hit,
but is still functioning correctly.  This is the “yellow” state.  Other errors may accumulate
and be rectified effectively by the en masse TMR.  On the other hand, certain designs
and error modes may spread rapidly owing to a “cone of influence” propagating from a
single fault.  When two or more hits affect the same regions of more than one FPGA,
the operation of the VFPGA is not reliable, which corresponds to the “red” state.
The concept of operation of the VFPGA is then best summarized as operating without
concern until “yellow”.  Once “yellow”, the system in which the VFPGA is located should
strive to perform a total reset of the VPGA as soon as possible.  This is distinctly
different from other mitigation schemes in which “green” can go to “red” with no “grace
period”.  The duration of the “grace period” (i.e., the “yellow-to-red” interval) is purely a
function of circumstance, the orbital profile, the method of design.
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Design enhancements to the Ganglion

A number of other intriguing possibilities exist to make the Ganglion ASIC even more
useful.

1. One is rapid-context switching.  In this case, the control CPU could trigger the
VFPGA to select only one of three distinct personalizations, which could be
alternated within a clock cycle.  This amounts to a rapid-fire context switch, with a
maximum of three contexts.

2. The VFPGA could be expanded from three to four or more different FPGAs,
thereby further improved robustness.

3. The phase edges of individual devices could be skewed to provide some
robustness to single event transient

4. In dose rate environments, the VFPGA could be overwhelmed by rail span
collapse in multiple devices.  Under these conditions, no mitigation strategy can
be effected, and complex FPGAs become unreliable altogether.  If the ganglion
and control management processor are built in a dose-rate hardened CMOS
technology, however, it is possible to create a firewall concept.  In the firewall
concept, a per-pin safehold level is defined, and upon a trigger signal, the
ganglion moves all pins electrically to the safehold level.  This is a potentially
useful mechanism for circumvention and recovery.  Until a special “clear” signal
is asserted (upon reconfiguration of all devices within the VFPGA), the safehold
levels are maintained, thus providing an orderly scheme for bringing disrupted
devices online.

1.5. Status of the VFPGA Project
The VFPGA project has received support from the Air Force Research Laboratory /
VSSE and from Missile Defense Agency (MDA).  While the effort in this contract
produced the essential basis of the ganglion ASIC, much work is still needed, and at the
time of this writing is being pursued in follow-on and concurrent contract and in-house
work.

The planned eventual embodiment of the VFPGA is in a ball grid array multichip module
(MCM) package as motivated by the Figure 3 depiction.  This MCM would be formed
using the high density interconnect (HDI) patterned overlay process, which has been
successfully used to implement a number of complex MCM designs for aerospace
applications, ranging from jet fighters to interplanetary spacecraft.  The challenges in
doing this include: (1) wiring supply of several high pincount components; (2) obtaining
functional parts in bare die form.  If successful, the VFPGA can be formed as a very
compact package, preferably a package that is “isomorphic” to that used in a standard
FPGA.  It is important to note that this particular embodiment places each FPGA device
in a tiled arrangement.  Stacked arrangements could be done, but such configurations
increase the likelihood of a pathological strike in which an energetic particle penetrates
the entire stackup.  The horizontal tiling, while not totally immune to this effect,
considerably reduces the cross section or probability of its occurrence.
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Figure 3.  VFPGA as a MCM  (floorplan).

1.5.1. Summary
The VFPGA is a scheme for systematic TMR at an entire-component level.  It relies on
the use of a radiation-hardened voting ASIC to manage redundancy of observable
errors on a pin-by-pin basis.  Advanced packaging is proposed as a way of managing
the very large number of input/output pins, so that a VFPGA is not much larger than a
single FPGA component.

The remainder of this document addresses the Ganglion ASIC design.  The next
chapter describes the TMR cell array, which amounts to the heart of the Ganglion.
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2.0 TMR Cell Design

The cell is considered a hardened by design core module. It takes data from 3 data
sources (FPGA’s), corrects the data, and outputs the corrected data. It counts the
number of errors detected from each data source independently and keeps a record of
the error counts. When requested, the cell will transmit the error counts on the sd1,
sd2, and sd3 serial data lines. It can also count CRC errors if the data sources have
CRC capability and output the count on the sdcrc serial data line. The cell can work in
conjunction with a microprocessor that makes decisions based on the error counts of
the data sources. Figure 1 shows a simplified block diagram of the cell.

Figure 4. Cell Block Diagram

The data I/O’s are bidirectional, so the data can also come from the outside world into
the cell. If the data passes through the cell from the outside world, the cell disperses the
data to the three data sources. A simplified diagram of the tri-state I/O data is shown in
Figure 2. If data travels from the outside world to the 3 data sources, there will be no
EDAC or error counting on those particular data lines. The data direction is set following
a Power on Reset (rstn) or a restart command. The dir input signal is a serial stream of
512 bits of data where each bit 0-511 pertains to the I/O pin number and is used to set
the direction enable for the data I/O pins. The diren signal is the gate for the I/O
direction enable serial stream. It is high when the data direction bits are being shifted
into the cell and goes low when the last bit is shifted in. A timing diagram of the two
signals is shown in Waveform 1 of the Timing Diagrams section in this data sheet. Each
of the 512 bits in the serial stream will set 4 I/O pins direction. Three of the 4 are the
direction enables for I/O’s between the data sources (FPGA’s) 1, 2, and 3, and the cell.
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The Fourth is the direction enable for the I/O between the outside world and the cell. If
an I/O pin direction enable is set to “1”, the data will be an output from the cell to each of
the 3 data sources and will be an input from the outside world into the cell. If the I/O pin
direction enable is set to “0” the data will be an input from the 3 data sources into the
cell and will be an output from the cell to the outside world. The cell will not begin
counting errors, following an rstn or restart command, until the I/O direction enables
are set and the instruction sets are issued.

Figure 5. Tri-state I/O Data

Immediately following the I/O data direction enable cycle, the count type (cntyp[1:0]),
instruction (instr[3:0]), and flag instruction (finstr[3:0]) need to get set. These signals
are internally registered and can only be changed following direction I/O enable cycle
after rstn or restart command. The timing can be seen in Waveform 2 of the Timing
Diagrams section. Following the I/O direction enable cycle and setting the count type
and instructions, normal counting mode begins. An input data error counting timing
diagram is shown in Waveform 3 of the Timing Diagrams section.

2.1. Definitions

System – The IC’s and circuitry that are included within the boundaries of the 3 data
sources (FPGA’s), the cell, the microprocessor, and any other IC’s or circuitry used
within the system.

Outside world – Signals or sources that come from or go outside the boundaries of the
System.

Data Source – One of the three data sources (FPGA’s, ASIC’s, or other IC’s) providing
data to the cell for Error Detection and Correction (EDAC).
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2.2. Acronyms

CRC Cyclic Redundancy Check
EDAC Error Detection and Correction
TMR Triple Modular Redundancy
FPGA Field Programmable Gate Array
ASIC Application Specific Integrated Circuit
IC Integrated Circuit
I/O Input/Output
LSB Least Significant Bit
MSB Most Significant Bit

2.3. I/O Descriptions

This section gives a table of all the inputs and outputs of the TMR Cell. It gives details
on what each input does and explains the outputs as well.

2.3.1. Table of I/O’s

clk input Global clock.
rstn input power on reset.
restart input Restarts the system to an initial state.
indn input Initialization (or configuration) of data sources is complete.
crcerr[3:1] inputs CRC error signals from data sources (FPGA’s). These

inputs must be externally grounded if unused.
diren input Gate for dir serial input data stream. This signal is high when

the dir data stream that sets the tri-state I/O’s to input’s or
output’s is being shifted in. It is low otherwise.

dir input Serial input data stream that is 512 bits long for stipulating
data direction on the tri-state I/O’s.
0 = input on the d1, d2, and d3 data lines and output on the

do data lines.
1 = output on the d1, d2, and d3 data lines and input on the

do data lines.
cntyp[1:0] inputs Count type select bits.

00 = No counting.
01 = Global error count mode. Increment count each

positive clock edge by total number of data
mismatches for each FPGA.

10 = Region error count mode. Increment each regional
counter every positive clock edge by total number if
data mismatches in each region for each FPGA.

11 = Pin error count mode. Increment each data pin counter
every positive clock edge for each FPGA.
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instr[3:0] inputs Instruction bits select the terminal count and the terminal
count bit width. See tables 1, 2, and 3.

finstr[3:0] inputs Flag instruction bits select whether or not to set a flag when
terminal bit count has been reached and what the terminal
count number will be. See tables 1, 2, and 3.

crccnt input Gate instructing the cell to transmit the CRC count on the
sdcrc serial data line.

curcnt input Gate instructing the cell to transmit the terminal count bits
only sd1, sd2, and sd3 serial data lines.

curlcnt input Gate instructing the cell to transmit the all the error count
bits on the sd1, sd2, and sd3 serial data lines.

rstcnt input Counter reset instructs the counters that have not yet
reached terminal count to reset.

domux[1:0] inputs Data output multiplexer selects which data to output on the
do lines that have been set to outputs.
00 = Output the triple voted data from the 3 data sources

(FPGA’s).
01 = Output the data from data source 1 (FPGA 1).
10 = Output the data from data source 2 (FPGA 2).
11 = Output the data from data source 3 (FPGA 3).

sdcrc output Serial data CRC error count. Bits 0-3 are the crc error count
from data source 1. Bits 4-7 are the crc error count from
data source 2. Bits 8-11 are the crc error count from data
source 3.

sd1 output Serial data error count from FPGA 1.
sd2 output Serial data error count from FPGA 2.
sd3 output Serial data error count from FPGA 3.
d1[511:0] I/O Birdirectional data to/from data source 1. Any unused pins

should be externally grounded.
d2[511:0] I/O Birdirectional data to/from data source 2. Any unused pins

should be externally grounded.
d3[511:0] I/O Birdirectional data to/from data source 3. Any unused pins

should be externally grounded.
do[511:0] I/O Birdirectional data to/from “outside world”. Any unused pins

should be externally grounded.

2.3.2. Description of I/O’s

2.3.2.1. System Clock – clk

This is the system global clock.

2.3.2.2. System Reset – rstn
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This is the system power on reset.

2.3.2.3. Restart:

This input resets all counters and initializes all internal registers back to their original
reset value of zero. It is used as a reset or initialization state after reconfiguration of one
or more data sources. If one of the data sources is taken offline, the system needs to be
synchronized back to an initial state.

2.3.2.4. Initialization (or Configuration) done - indn:

This input signal goes from low to high when the 3 data sources are done configuring
and initializing. It should remain high unless a power on reset or restart command is
issued.

2.3.2.5. CRC error - crcerr:

These input signals come from the three FPGA’s. They toggle “high” when CRC errors
are detected in the configuration memory of the FPGA’s. The cell counts these
separately from the data errors. If unused, these pins need to be tied to ground
externally.

2.3.2.6. Gate for I/O tri-state data direction enable - diren:

This signal is the gate for the serial data direction stream. When it is high, the input data
on the dir line is serially transmitted into the cell. It needs to remain high until each data
direction bit has shifted into the cell. When this signal goes low again, the i/o data
direction is registered and remains until a power on reset or a restart command occurs.
A timing diagram of the I/O data direction select is shown in Waveform 1 of the Timing
Diagram section.

2.3.2.7. I/O Data Direction Serial Stream – dir:

This is the serial data bit stream that sets the tri-state I/O buffers to inputs or outputs.
Once the direction is set, the data becomes available on the tri-state I/O pads as soon
as the internal sysen signal goes high, which is the second rising edge of the clock after
the diren signal goes low as shown in Waveform 1 of the Timing Diagrams section.

On the tri-states that are set as inputs (“0”), the data comes from the 3 data sources,
through the cell to the outside world. The data on these lines gets EDAC and any errors
are counted and stored. On the tri-states that are set as outputs (“1”), the data comes
from the outside world, passes through the cell, and on to the 3 data sources. EDAC
and Error counting on these lines does not occur.
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2.3.2.8. Count type - cntyp[1:0]:

These two inputs select which type of error counting to use. The count type can only be
changed following a power on reset (rstn) or a restart (restart) command and after the
I/O direction enable cycle. The count type command should be issued directly after the
I/O direction enable gate goes low.

The count type instructions are:

00 = No counting.
01 = Global counting. All data input pins with errors get counted globally each clock

cycle. It counts total errors for each FPGA each clock cycle. Each FPGA has its
own independent counter, so there are 3 separate counters. This type of
counting uses the least amount of internal switching, but only narrows down the
FPGA with the most errors.

10 = Region counting. The error counters are grouped into 32 regions of 16 data
input pins. This narrows down the regions where problems are occurring. Each
error within the group of 16 gets counted every clock cycle. This type of
counting uses more counters than the global count, so switches more, but
narrows down into smaller regions of each FPGA, where more errors are
occurring.

11 = Pin counting. There is an error counter for each input data pin individually. This
type of counting uses the most counters and therefore the most power, but
narrows down errors to each individual data input pin on each FPGA.

A timing diagram showing of the count type, instruction, and flag instruction is shown in
Waveform 2 of the Timing Diagrams section of this data sheet.

2.3.2.9. Instruction – instr[3:0]

The instruction tells the cell what the maximum error counts should be. The terminal
count bit width is the overflow bit. It is set when the maximum instructed count is
reached. The instruction set is shown in Table 1. For Global count type there is only one
terminal count bit for each FPGA counter. For Region count type there are 32 terminal
count bits for each FPGA. For Pin count type there are 512 terminal count bits for each
FPGA. The instruction should be issued directly after the gate for the I/O direction
enable goes low.

Table 1. Instruction Set.

Instr
[3:0]

Terminal
Count Bit

Width
Terminal
Count

0000 3 4
0001 4 8
0010 5 16
0011 6 32
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0100 7 64
0101 8 128
0110 9 256
0111 10 512
1000 11 1,024
1001 12 2,048
1010 13 4,096
1011 14 8,192
1100 15 16,384
1101 16 32,768
1110 17 65,536
1111 18 131,072

A timing diagram showing the instruction is shown in Waveform 2 of the Timing
Diagrams section of this data sheet.

2.3.2.10.   Flag Instruction – finstr[3:0]:

The flag instruction, if used, tells the cell when to set an alert signal if the selected
number of terminal bits has been reached. After a power on reset or restart command
and I/O direction enable cycle, the flag instruction should be issued. If the flag
instruction is set to 0000, the flag signal is turned off and there will be no warning signal
from the cell that error counts are reaching terminal counts. The flag instruction must be
less than or equal to the terminal count number or it will not get set. If there is no
request to send data on the serial data lines and the stipulated number of terminal count
bits has been reached, the serial data line from the corresponding FPGA will go high
and remain high until either a power on reset, restart, or request for error data (curcnt or
curlcnt) occurs. The flag instruction used with each count type is shown in Table 2. The
flag will get set when the number of terminal count bits stipulated in the table is reached.
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Table 2. Flag Instruction Set.

finstr
[3:0]

Flag with
Global
cntyp

Flag with
Region
cntyp

Flag with
Pin

cntype
0000 0 0 0
0001 1 2 2
0010 1 3 4
0011 1 4 8
0100 1 5 16
0101 1 6 32
0110 1 7 64
0111 1 8 128
1000 1 9 256
1001 1 10 256
1010 1 11 256
1011 1 12 256
1100 1 13 256
1101 1 14 256
1110 1 15 256
1111 1 16 256

A timing diagram showing the flag instruction is shown in Waveform 2 of the Timing
Diagrams section of this data sheet.

2.3.2.11. CRC Error Count request – crccnt:

When this signal goes high, the cell transmits the current CRC error count on the serial
data sdcrc line. It transmits 12 bits of data as shown in Figure 3. The first 4 bits ([3:0])
are the CRC error count from FPGA 1. The second 4 bits ([7:4]) are the CRC error
count from FPGA 2. The third 4 bits ([11:8]) are the CRC error count from FPGA 3.

Figure 6. CRC error count data bits.

The timing diagram for the CRC error serial data bit stream is shown in Waveform 4 of
the Timing Diagrams section.

2.3.2.12. Current Count Request – curcnt:

11 4   3               08   7

fpga 1 bitsfpga 2 bitsfpga 3 bits
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When this input goes high, the cell transmits only the terminal count error bits
corresponding to FPGA’s 1, 2, and 3, on the serial data lines, sd1, sd2, and sd3,
respectively. This input must remain high until the final bit has shifted out. If this input
remains high after all the bits have shifted out, zeros will be shifted out. If this input goes
low before the end of transmission, the cell will stop transmitting data. If this input
toggles low and then high again, the new terminal count data bits will start transmitting.
A timing diagram of the serial data bit stream when the curcnt command is issued is
shown in Waveform 4 of the Timing Diagrams section.

If the count type is Global, only one bit will be transmitted and it will be a “1” if the
terminal count has been reached and a “0” otherwise. Figure 4 shows a diagram of the
count bits. The “n” above the bold box represents the terminal count bit, which was
selected by the flag instruction.

Figure 7. Count bits for Global count type.

If the count type is Region, a maximum of 16 transmitted bits will have terminal count
data. Only the bits that correspond to regions that have reached terminal error count will
be set. Figure 5 shows a diagram of the count bits. The “n” above the bold boxes
represents the terminal count bit, which was selected by the instruction, for each of the
32 regions.

Figure 8. Count bits for Region count type.

If the count type is Pin, 512 bits will be transmitted. Only the bits that correspond to
input data pins that have reached terminal error count will be set. Figure 6 shows a
diagram of the count bits. The “n” above the bold boxes represents the terminal count
bit, which was selected by the instruction, for each of the 512 I/O pins.

n                       1   0

terminal count
overflow bit

MSB LSB

2
1

3

32

 n               2   1   0

terminal count
overflow bits

MSB LSB
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Figure 9. Count bits for Pin count type.

2.3.2.13. Current Long Count Request – curlcnt:

When this input goes high, the cell transmits the current count for each data input pin.
The bit order will be I/O pin 0, bit 0 first, bit 1 next, and so on until the count bit width for
pin 0 is reached and then I/O pin 1 bit 0, bit 1, and so on until all the count bits
corresponding to each FPGA, 1, 2, and 3, on the serial data lines, sd1, sd2, and sd3,
respectively have been transmitted. This input must remain high until the final bit has
shifted out. If this input remains high after all the bits have shifted out, zeros will be
shifted out. If this input goes low before the end of transmission, the cell will stop
transmitting data. If this input toggles low and then high again, the new count data will
start transmitting. The timing diagram showing the serial data bit stream when this
command is issued is shown in Waveform 4 of the Timing Diagrams section.

If the count type is Global, the number of data bits shifted out is determined by the
instruction bit width. For example, if the terminal count bit width is set to 8, 8 bits will be
shifted out where the 8th bit is the terminal count bit. Refer to Figure 4 for the diagram of
the count bits. The least significant bit (LSB) is shifted out first, and the most significant
bit (MSB), which is the terminal count bit, is shifted out last.

If the count type is Region, the number of data bits shifted out is determined by the
instruction bit width times 32. For example, if the terminal count bit width is set to 8, 8
bits will be shifted out for each of the 32 regions for a total of 256 bits on each of the
sd1, sd2, and sd3 lines corresponding to those FPGA’s. The 8th bit from each region’s
error count is the terminal count bit for that region. Refer to Figure 5 for the diagram of
the count bits. The LSB is shifted out first, and the MSB, which is the terminal count bit,
is shifted out last from each region.

If the count type is Pin, the number of data bits shifted out is determined by the
instruction bit width times 512. For example, if the terminal count bit width is set to 8, 8
bits will be shifted out for each of the 512 I/O pins for a total of 4096 bits on each of the
sd1, sd2, and sd3 lines corresponding to those FPGA’s. The 8th bit from each I/O pin
error count is the terminal count bit for that I/O pin. Refer to Figure 6 for the diagram of

1
2

512

terminal count
overflow bits

MSB LSB

3

 n               2   1   0
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the count bits. The LSB is shifted out first, and the most significant bit MSB, which is the
terminal count bit, is shifted out last from each I/O pin.

2.3.2.14. Reset Counters – rstcnt:

This input will reset the counters that have not yet reached terminal count. It will not
reset the counters that have reached terminal count. If the counters are not reset
periodically and are allowed to continue counting, over an extended period of time, the
counters could reach terminal count due to periodic inadvertent bit flips. If this happens,
the system could get reconfigured and restarted needlessly.

2.3.2.15. Data Output Multiplexer – domux[1:0]:

These two inputs are the select lines for the data output multiplexers. They should be
set to 00 when the system is in normal operation after a power on reset or restart. When
they are set to 00, the output is the error corrected data from the 3 data sources. If
these signals get set to something other than 00, the output comes directly from the
data source selected and no error correction is done on the output data.

00 = corrected data from the 3 data sources.
01 = data from FPGA 1 only.
10 = data from FPGA 2 only.
11 = data from FPGA 3 only.

If domux is selected to be something other than 00, error counting stops. Figure 7
shows a diagram of the data output mux. If one of the other data lines besides 00 is
selected, this is an indication that an external element (microprocessor) has made a
decision to reconfigure one of the FPGA’s due to the number of errors it was
experiencing.

Figure 10. Output Data select multiplexer.

2.3.2.16. Serial Data CRC Error Count – sdcrc:

This is the serial data output for the CRC error count for each of the three FPGA’s. It is
a twelve bit serial stream with data output as shown in Figure 3. The timing diagram for

domux0
domux1

fpga 1 data
fpga 2 data
fpga 3 data

output data

corrected data from the 3 fpga’s
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the serial stream is shown in Waveform 4 in the timing Diagrams section. The data is
serially output as explained in section 4.2.11 above.

2.3.2.17. Serial Data lines 1, 2 and 3 – sd1, sd2, and sd3:

This is the serial data output for the error count corresponding to FPGA’s 1, 2 and 3,
respectively. The timing diagram for the serial data streams is shown in Waveform 4 in
the Timing Diagram section. The data is serially output as explained in sections 4.2.12,
and 4.2.13 above.

2.3.2.18. Data Lines – d1[511:0], d2[511:0], and d3[511:0]:

These are the input/output data lines between data sources, FPGA’s 1, 2, and 3, and
the cell. All unused pins should be externally grounded. After power up or a restart
command all the data I/O’s get initialized to be either an input or output. The data input
on the I/O pins that are set to inputs gets corrected, if errors are detected, and output on
the corresponding output data line.

2.3.2.19. Data Lines – do[511:0]:

These are the input/output data lines between the cell and the outside world. All unused
pins should be externally grounded. After power up or a restart command all the data
I/O’s get initialized to be either an input or output. The data lines from section 4.2.18
selected to be inputs will be outputs on these lines. The data lines from section 4.2.18
selected to be outputs will be inputs on these lines.

2.4. Operation

Following a power on reset or restart command the cell is in an idle state. All internal
registers are set to zero. All tri-state I/O’s are inputs until the data direction has been set
with the diren gate signal and dir serial data direction stream. Once configuration and
initialization of the system is complete and the I/O data direction has been set, the cell is
ready to receive the count type and instruction sets for operation. Once the cell receives
the count type and both sets of instructions, it will begin counting. The count type,
instruction, and flag instruction should all be sent simultaneously.

Once the count type has changed from 00, error counting on the 3 data lines will start
and the new count type will be registered. The count type can only be changed to a
different type of counting after a power on reset or a restart command. Table 3 shows
the count type bit selects. The count types are explained further in section 4.2.8 above.

Table 3. Count type bits
cntyp Description

00 No counting
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01 Global type counting
10 Region type counting
11 Pin type counting

If any of the crccnt, curcnt, or curlcnt signals are high, which are when the current
error data is being requested and the data is transmitting on the serial data lines, and
these lines are toggled low and then high again, the new error data will begin
transmitting. The crccnt signal is independent of the curcnt and curlcnt signals. Only
one of the two curcnt or curlcnt signals should be high at a time. If one of them is high
and the other goes high before the first goes low, any new error data will begin
transmitting and the old data will be lost. If both of these signals are low and the output
data on one of the serial data lines is high, it means the cells internal terminal count
error limit has been reached for that FPGA and the flag is set.

The serial data output lines operate independently of the rest of the system, so once a
request is made for the error count data, it gets stored in the serial data shift registers
and begins shifting. The I/O data lines continue to operate normally and error counting
continues as well.

While the error counters are counting, if any of the counters reach terminal count, that
particular counter will stop counting. This feature keeps the cell from unnecessary
switching and saves power. If the reset counters command is issued, the counters that
have reached terminal count will not get cleared. These counters will only get cleared
with a power on reset or restart command.
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2.5. Timing Diagrams

Waveform 1. I/O Data Direction Selection Timing Diagram

Waveform 2. Setting Count Type and Instructions Timing Diagram

Waveform 3. Input Data from 3 Data Sources Timing Diagram
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Waveform 4. Timing Diagram for CRC Error data Request and Serial Data Bits

clk

crc_cnt, cur_cnt, cur_lng_cnt

sdcrc, sd1, sd2, sd3 0 1 n-1    n
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2.6. Considerations in TMR Cell / Ganglion Design:

The decision making process that can be used for determining if an FPGA should be
reprogrammed does not exist within this cell design. If this cell is used in conjunction
with a microprocessor, the microprocessor will determine the parameters for
reprogramming. If the microprocessor is reprogrammable, the parameters can be
changed. Some considerations to look at:

- are the majority of the bit errors coming from the same data source?
• if so, are the errors coming from the same pins or region?

- are CRC errors being looked at and if so, are they coming from the same data
source?

- have the counters been reset?

Three modes should be looked at in the decision making process. The first, mode 00, is
non-immediate. Non-immediate means that attention is not required immediately. The
errors are typically bit flips and, while they get counted as errors from the data source,
immediate attention is not required.

The second, mode 01, is semi-immediate. This mode means that attention is required,
but the data source can remain in operation until a reconfigure can be done. The errors
are continuous and are occurring frequently enough that the data source needs to be
reconfigured, but are not severe enough to take the data source off line immediately.
The data source can wait until a more convenient time frame occurs where it can get
reconfigured.

The third, mode 11, is immediate. Immediate attention is required on one of the data
sources and it should be taken off line and reconfigured immediately. The data source
should not be used until after it has been reconfigured and a restart command has been
issued to initialize the system.

When the third mode of operation has been established based on the errors the cell has
detected and counted, and one of the three data sources is taken off line, one of the
remaining two data sources will provide the data to the outside world. Since the cell
stores the detected errors, this data can be used to determine which of the remaining
two sources has been more stable. Whichever source has been determined more stable
can be used for the data output. Once all three sources are operating normally again,
the output data will once again be the triple voted data.

The process used to determine if one of the FPGA’s should be reprogrammed depends
on the parameters set for the frequency and type of errors occurring. Having CRC
checking greatly improves the significance of the problems occurring since it looks at
the configuration memory of the FPGA’s. An example flow chart for the decision making
process is shown in Figure 8.



28

Figure 11. Mode Decision Flow Chart

The chart shows CRC error considerations and I/O error considerations. If the CRC
errors are 0, there are no problems detected with configuration memory and this is
considered minimum (min). If the CRC errors are greater than one, there are problems
within configuration memory, but because the crc error pin is toggling, the errors in
configuration memory are sporadic. This is considered middle range (mid). If the CRC
errors are stuck at one, configuration memory has a more severe problem. This is
considered maximum (max). The same follows with the I/O errors detected. A few errors
are within a minimum range, more errors are within a middle range, and a lot of errors
have reached a maximum range.

The percentage of total errors to pins, regions, or entire FPGA is the parameter that
should be able to be reset or reprogrammed. For example, if counting pin I/O errors for
each FPGA and one of the FPGA’s has reached terminal count on half of its I/O pins,
there is a maximum percentage of I/O errors. If the CRC error count on this same FPGA
is one or greater, there is also a problem with the configuration memory. This FPGA
should be taken off line immediately since it shows severe damage.

If one of the FPGA’s is taken off line, the next consideration is which of the remaining
FPGA’s to use for the data output. Since the data is stored in the cell, it can be looked
at to determine which of the remaining two FPGA’s has been more stable and that
FPGA’s data will be used for the output to the outside world.
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3.0 Conclusions / Status

This report has described the virtual FPGA (VFPGA) concept and logic design of the
key TMR management application-specific integrated circuit (ASIC).  Chapter 1
provided an overview of the VFPGA concept, and Chapter 2 detailed the datasheet-
level description of the ganglion ASIC or TMR cell array.

At the time of this writing, AFRL seeks funding to carry out an implementation of the
basic concept as a design-hardened ASIC and multi-chip module (MCM).  In the
meantime, preparation is underway to test a scaled version of the VFPGA using two
FPGAs.  One FPGA is mounted in a fixture to permit exposure to heavy ions for single
event upset (SEU) testing.  This FPGA is partitioned into three pseudo-FPGAs,
representing in simulation the three separate FPGA devices that would be used in the
actual VFPGA implementation.  The second FPGA is a service FPGA that will carry an
implementation of the Ganglion/TMR cell array.  It is shielded from exposure, mimicking
in effect a rad-hard part.  This setup will be implemented as part of a more
comprehensive FPGA test to study SEU phenomena in modern FPGAs, and it will
establish viability of the overall VFPGA concept.
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